Supporting Information

Modal characteristics in a single-nanowire cavity with a triangular cross-section

Min-Kyo Seo¹, Jin-Kyu Yang¹, Kwang-Yong Jeong¹, Hong-Gyu Park^{2*}, Fang Qian³, Ho-Seok Ee², You-Shin No², and Yong-Hee Lee¹

¹Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea

²Department of Physics, Korea University, Seoul 136-701, Korea

³Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA

*Corresponding author. E-mail: hgpark@korea.ac.kr

Index

Figures S1-S3

Figure S1. Light in vs. light out obtained from the rate equation analysis. The TE-like mode at d = 300 nm (red) has ~3.1 times lower threshold than the TE-like mode at d = 175 nm (blue).

Figure S2. Q and confinement factors of the TE-like and the TM-like modes in a nanowire cavity located on SiO₂ substrate. (A) Q factor versus nanowire size on a side. (B) Confinement factor versus nanowire size on a side.

Figure S3. Dispersion curves in a nanowire cavity located on a SiO₂ **substrate.** Single-mode regions are shown in (A) the TE-like and (B) the TM-like modes. N-S mode stands for nanowire-substrate mode.