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Normal mode analysis 
in multi‑coupled non‑Hermitian 
optical nanocavities
Kyong‑Tae Park 1,3, Kyoung‑Ho Kim 2,3, Byung‑Ju Min 1 & You‑Shin No 1*

Coupled optical cavities are an attractive on-chip optical platform for realizing quantum mechanical 
concepts in electrodynamics and further developing non-Hermitian photonics. In such systems, an 
intercavity interaction is often considered as a key parameter to understand the system’s behaviors 
but its estimation/calculation is typically limited for some simplified systems owing to extended 
complexities. For example, multi-coupled photonic crystal (PhC) nanocavities exhibiting strong 
resonances with a large free spectral range can serve as an excellent test-bed to study non-Hermitian 
optical properties when spatially non-uniform gain is introduced. However, the detailed quantitative 
analysis such as spectral tracing of cavity normal modes is often limited in commercially available 
numerical tools because of the required massive computation resources. Herein, we report on a 
concept of spatial overlap integrals (SOIs) between the eigenmodes in non-coupled PhC nanocavities 
and utilize them to obtain the intercavity interactions in passively coupled PhC nanocavity systems. 
With the help of coupling strength factors calculated from SOIs, we were able to fully exploit the 
coupled mode theory (CMT) and readily trace the detailed spectral behaviors of normal modes in 
various multi-coupled PhC nanocavities. Full-wave numerical simulation results verified the proposed 
method, revealing that the characteristics of original eigenmodes from non-coupled PhC nanocavities 
can act as key building blocks for analyzing the normal modes of multi-coupled PhC nanocavities. We 
further applied this SOI method to various multi-coupled PhC nanocavities with non-symmetric optical 
gain/loss distributions and successfully observed the unusual spectral evolution of normal modes and 
the correspondingly occurring unique non-Hermitian behaviors.

Over the past decade, various coupled optical systems, which are typically composed of a pair of key optical 
components, have drawn significant attention because they provide an on-chip optical platform for realizing 
the quantum mechanical concept of parity-time (PT) symmetry1–19. Accordingly, unusual optical phenomena, 
including the symmetry-broken propagation of light and the modal bifurcation/degeneration near exceptional 
points (EPs), have been successfully observed in various types of coupled optical waveguides1–8 and micro- and/
or nanocavities9–19. It has also shown that the smart control of key parameters allows for in-depth explorations, 
revealing the emergence of nonlocality effects and complex supermodes, and the formation of spatial and tempo-
ral solitons2,20–24. In particular, for coupled optical cavities, these counter-intuitive and non-Hermitian behaviors 
have been demonstrated in systematically controlled manners by introducing an asymmetric optical gain/loss 
distribution or by leveraging a fine interplay between the gain/loss and the variable intercavity interaction (or 
coupling)12–19. In such systems, the coupled mode theory (CMT)-based master equation, which describes the 
spectral behaviors and the corresponding phases of systems, dictates the critical importance of intercavity interac-
tion. For example, the relative strength of interaction for a given gain/loss in coupled microcavities determines 
whether the system’s state is broken or unbroken PT symmetric, exhibiting the ability to control light transmis-
sion between two microstructures13–15.

In this regard, an in-depth understanding of interstructural interactions in coupled optical cavities has become 
essential in understanding the overall phenomena and utilizing them for useful optical applications. However, 
despite successful demonstrations in previous reports, further exploration of the potential of non-Hermitian 
properties in more extended and complex coupled optical systems, which typically consist of more than one pair 
of key components, is limited19. This is partly because calculating/estimating the intercavity couplings between 
the components is difficult without constraining them to be symmetrically identical in shape or considering 
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certain interactions to be negligible, which eventually makes it challenging to analyze the behaviors of entire 
systems from the master equation. Consequently, various design proposals with theoretical studies and experi-
mental demonstrations as well as their unique device applications have not been extensively investigated.

In this paper, we report a concept of the spatial overlap integrals (SOIs) to numerically calculate the inter-
structural interactions between two optical nanocavities, which can be ubiquitously applicable to more complex 
coupled nanocavity systems. In particular, we employed two-coupled (or doubly coupled) passive photonic 
crystal (PhC) nanocavities and quantitatively compared the intercavity couplings obtained from the conven-
tional method and the SOI technique for validation. Furthermore, we applied the technique to more complex 
non-Hermitian nanocavities with non-symmetric optical gain/loss distributions and investigated their unique 
spectral and modal behaviors.

Results
Intercavity interaction in a coupled cavity system
We begin by considering a coupled cavity system consisting of several element cavities with different intrinsic 
optical properties (Fig. 1a). Each element cavity supports original eigenmodes when there are no intercavity 
interactions. An original eigenfrequency of a specific eigenmode of nth element cavity can then be written by 
fn + i(γn − κn) with the time harmonics of exp(−iωnt) (Fig. 1b). Here, fn is the eigenfrequency determining 
the spectral position in a dispersion diagram (i.e., ωn = 2π fn ), and γn and κn are the intrinsic optical gain and 
loss, respectively. If these individual element cavities are combined into a system to form a coupled cavity, the 
eigenfrequencies of the system ( fsys ) are no longer the same as those of the element cavities. Instead, they are 
determined by the intercavity interactions parameterized by the coupling constants Jn,m.

To understand how the interactions determine fsys , we utilize the concept of coupled mode theory (CMT) 
and describe the system as the following characteristic matrix equation consisting of several coupled linear dif-
ferential equations:

Here, an represents the amplitude of the eigenmode supported by the nth element cavity. The solutions then 
represent the fsys , which are expressed by a combination of fn , γn , κn, and Jn,m (where n and m = 1, 2, 3, …), and 
reveal how the intercavity interactions play a critical role on the entire system’s spectral behaviors. Although the 
current form of the coupled equations exhibits some complexity, several assumptions can be made to simplify it 
without loss of generality. For example, we first consider identical element cavities with the same eigenfrequency 
of f0 . Second, we assign a lossless passive condition to every element cavity ( γn = κn = 0 , for all n). Finally, if 
we apply time-reversal symmetry to the intercavity interactions, Eq. (1) becomes a simply reduced and intuitive 
form as follows:
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Figure 1.   (a) Schematic of a coupled cavity system consisting of several element cavities. The individual 
element cavities are coupled with one another through coupling constants Jn,m , where n and m represent 
different cavity numbers. (b) The nth element cavity retains the intrinsic optical gain, γn , and loss, κn , 
respectively.
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Provided that the necessary information (e.g., number of cavities n, eigenfrequency of element cavity f0 ) 
is given, one can readily solve this equation and obtain fsys in the form of f0 and Jn,m . For example, for the 
simplest case of n = 2, the system eigenfrequencies of even ( f+ ) and odd normal modes ( f− ) are f± = f0 ± J . 
Accordingly, we can analytically understand how the original eigenfrequency is split into two eigenfrequencies 
of normal modes of the system. In recent years, interesting studies of doubly coupled non-Hermitian cav-
ity systems (i.e., γi , κi  = γj , κj ) have advantageously utilized the fine interplay between the intercavity cou-
pling and the gain/loss asymmetry. In these studies, the normal mode eigenfrequencies were expressed as 
f± = f0 ± (J2 −�γ 2)1/2 + i(γavg − κ) , where �γ = (γ2 − γ1)/2 and γavg = (γ2 + γ1)/2

17. By independently 
controlling either the coupling strength or the gain/loss profile, these studies successfully demonstrated unprec-
edented control over the PT-symmetric phases and their transitions at EPs and observed the correspondingly 
occurring modal coalescence. Notably, these studies serve as excellent examples of how critical it is to determine 
the exact values of the coupling constant to understand the characteristic phenomena and their underlying phys-
ics. In the next section, we briefly discuss methods for obtaining Jn,m in coupled systems.

Spatial overlap integral method
In many cases, particularly for the aforementioned doubly coupled systems with identical element cavities, a 
direct method called the frequency method has been widely used to estimate J . In this method, one can indepen-
dently calculate the single-element cavity and the entire system and find the corresponding eigenfrequencies of 
f0 and fsys . The coupling constant J can then be directly obtained from the solution of the characteristic equation 
(e.g., for a lossless passive system, J = (f+ − f−)/2 ). However, despite the successful analysis in those systems, it 
is not always trivial to obtain Jn,m for the systems with n ≥ 3. It is in fact impossible to analytically express Jn,m in 
terms of f0 and fsys . Consequently, it becomes more challenging to quantitatively analyze the exact contribution 
of interaction between individual entities to the overall system’s spectral behaviors.

In this regard, we have focused on an alternative numerical technique called the spatial overlap integral 
(SOI) method to address the issue and provide a more quantitatively informative and powerful solution. The 
basic strategy involves decomposing a highly coupled system consisting of N element cavities into as many as 
possible pairs of two element cavities. For a pair, each eigenmode mostly confines the electric fields within its 
cavity region; however, some portions of the fields extend outside the cavity and are evanescently distributed 
over the space near the other cavity. Notably, the SOI method focuses on integrating this spatial field overlap. 
This is because the intercavity coupling is a direct manifestation of the field interaction occurring in the space 
where the two eigenmodes coexist.

To clarify the concept, we consider two adjacent element cavities, 1 and 2, as shown in Fig. 2. The CMT then 
dictates that the total electric and magnetic fields in this doubly coupled cavity can be expressed as a linear 
combination of those of the individual cavities as follows:
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Figure 2.   Schematic of coupled element cavities. Electric and magnetic fields of cavities 1 and 2 are −→E i=1,2(
−→r ) 

and −→H i=1,2(
−→r ) . Blue- and red-colored three-dimensional (3D) Gaussian surfaces schematically represent the 

spatial distributions of field intensities of the resonant modes excited in cavities 1 and 2, respectively.
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Here, �E(�r, t ) ( �H(�r, t )) represents the total electric (magnetic) field of the system, and �En=1,2(�r) ( �Hn=1,2(�r) ) 
exhibits a complex electric (magnetic) field of the original eigenmode supported by the element cavity. In addi-
tion, an=1,2(t) ( bn=1,2(t) ) is the time-dependent amplitude of the corresponding electric (magnetic) field that 
varies harmonically with time: an(t) = Ane

−i(ωi t+ϕi) , and bn(t) = Bne
−i(ωi t+ϕi).

For two weakly coupled identical dielectric cavities with the same eigenfrequency f0 and spatial field distri-
bution, we can obtain a set of coupled differential equations for an=1,2(t) and bn=1,2(t) by exploring Maxwell’s 
equations and applying orthogonality conditions between fields as follows25,26:

where

Here, εs is the permittivity of cavity 1, and εc is the permittivity of the coupled cavity system and the integra-
tions are applied to all space. By combining Eqs. (4) and (5), we can readily eliminate bn=1,2(t) and rewrite the 
coupled equations using the following second-order differential equations for an=1,2(t):

Considering the fact that the field amplitudes harmonically change with time, the coupled differential equa-
tions provide the two eigen-solutions for ω : the higher and lower values are ω+ and ω− , respectively. Con-
sequently, the coupling coefficient κc between the two cavities can be expressed in the form of field overlap 
integrals27; that is,

In addition, if the interaction between the two cavities is sufficiently weak, the expression for κc in Eq. (8) can 
be further approximated as a simpler form:

Finally, the expression for κc can be directly converted into the coupling constant J ; that is,

As a result, we have successfully obtained the overlap integral expression for the coupling constant in a doubly 
coupled cavity system. Significantly, the result can be used to provide all the necessary components in Eq. (2) if 
we properly decompose the system into a set of doubly coupled systems and independently calculate the cor-
responding Jn,m . Consequently, it allows us to achieve the complete eigen-solutions for the systems with n ≥ 3. In 
the next section, we consider doubly coupled lossless passive nanocavities to apply the SOI method and examine 
its feasibility by directly comparing the results with those obtained independently from the frequency method.

Intercavity interactions in doubly coupled PhC nanocavities
Among the various types of optical resonant cavities, we preferentially employed doubly coupled photonic 
crystal (DC-PhC) nanocavities as our test-bed system (Fig. 3)17. Because a nanocavity with a submicron foot-
print typically supports a few eigenmodes with a large free spectral range (FSR), one can readily identify the 
eigenmodes and easily trace their spectral behaviors. The nanocavity used in this study is called the modified 
L3 PhC nanocavity, which was constructed as a two-dimensional slab structure with a thickness of 250 nm. A 
linear defect was introduced by missing three consecutive airholes and reducing two nearest-neighbor airholes 
in a triangular lattice PhC structure. The lattice constant was 420 nm, and the regular and reduced airhole sizes 
were 265 nm and 140 nm, respectively. The refractive index of the slab was set to 3.3. The two reduced air holes 
were outwardly shifted by 63 nm from their original lattice positions, effectively enlarging the cavity volume17.
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As shown in Fig. 3a, a horizontally coupled PhC nanocavity can be considered a combination of two identical 
element nanocavities separated by three rows of airholes. To describe the process of the overlap integral method, 
we first excited a eigenmode in each element nanocavity and investigated the electric field distributions. For 
the numerical simulation, we used the finite element method (FEM, COMSOL Multiphysics 5.6, wave optics 
module, COMSOL Inc.), which solves the full three-dimensional (3D) Helmholtz equation under appropriate 
structural parameters and boundary conditions. The logarithmic plots of x-, y-, and z-components of the electric 
fields clearly show the strong field confinement within the nanocavity and the evanescently decaying fields dis-
tributed over the space (Fig. 3b). This result indicates that the evanescently extended fields from each cavity can 
sufficiently overlap when the two cavities are closely coupled, thus allowing rich interaction. These interactions 
can be parameterized by calculating the extent of overlap in both amplitude and space. Furthermore, we show 
the spatial field distributions of integrands in c , c′ , g , and g ′ of Eq. (8) to clarify the process (Fig. 3c).

To verify the feasibility of the SOI method, we systematically changed the coupling geometry of the cav-
ity (Fig. 4) and independently calculated the coupling constant J using the SOI and the frequency methods, 
respectively. In Fig. 4a, one of the element cavities (cavity-2) gradually shifts upward, whereas the other remains 
unchanged. The J calculated by the SOIs are plotted as a function of airhole shift (top, Fig. 4b).

As expected, the interaction started decreasing initially but bounced back and reached a local maximum 
when five airholes were shifted. This is because the symmetry of the original eigenmode and the correspondingly 
distributed fields largely overlap when the lower boundary of cavity-2 becomes closer to the upper boundary of 
cavity-1 ((i) and (ii), Fig. 4c). These observations, including the overall features and detailed values of the plot, 
were reproduced almost identically using the frequency method (bottom, Fig. 4b). Therefore, we conclude that 
the SOI approach can be another powerful numerical method for describing intercavity interactions and can be 
more widely applied to coupled systems with multiple element cavities.
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Figure 3.   Overlap integral method in coupled nanocavities. (a) Schematics showing two identical L3 PhC 
nanocavities (left, middle) forming a doubly coupled nanocavity (right). (b) Logarithmic plots of all three 
electric field components of a resonant mode in each element cavity: x-, y-, and z-components (from left to 
right). (c) Plots of the integrands in overlap integral expressions: c , c′ , g , and g ′ (from left to right).
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SOI analysis on triply coupled PhC nanocavities
Based on the results shown in Fig. 4, we further increased the level of complexity in intercavity coupling by 
introducing another element cavity (cavity-3) in the horizontal direction (Fig. 5). This three-coupled (or triply 
coupled) PhC (TC-PhC) nanocavity system allows for two different methods of systematic variation in the 
coupling geometry. One is to shift the central element cavity (cavity-2) upward (Fig. 5a), and the other is to shift 
either the left (cavity-1) or right element cavity (cavity-3) upward (Fig. 5d).

Figure 5b,e show the normal mode eigenfrequencies calculated as functions of the number of airhole shifts 
using the SOI method. As expected, the shift in the central element cavity had more dramatic effects on the 
changes in the eigenfrequencies, exhibiting more distinct and structured features in the plot. This is because the 
shift in Fig. 5a equally affects the field interactions between element cavities 1 and 2 ( J12 ) and that of 2 and 3 
( J23 ), whereas the shift in Fig. 5d is expected to exclusively influence J12 . This difference becomes more noticeable 
when it reaches a critical point, at which the amount of change in the field interaction is greater than that at other 
shift positions. For example, when the shift was made by two airholes, the field interaction between adjacent 
cavities was significantly reduced owing to the symmetry of the original eigenmode. Subsequently, it applied to 
both J12 and J23 , resulting in all normal mode eigenfrequencies being closest to the original eigenfrequency ( f0 ) 
(Fig. 5b). However, this effect decreased by half in the case of Fig. 5e because J23 remained almost unchanged.
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Unambiguously, the electric field profiles strongly support our analysis (Fig. 6). The field profiles of the 
coupled nanocavities were generated by consolidating the original eigenmode field profiles at different element 
nanocavities weighted by the system’s eigenfrequencies (left, Fig. 6a,c). Figure 6b,d show the generated electric 
fields of the three normal mode at different eigenfrequencies for the TC-PhC nanocavities shown in Fig. 5a,d, 
respectively. Furthermore, all these features in the normal mode eigenfrequencies and field profiles were repro-
duced by full-wave simulations, reconfirming the feasibility and accuracy of the SOI method (Fig. S1).

SOI analysis on non‑Hermitian coupled nanocavity systems
We can further expand the application of the SOI analysis to a more complex non-Hermitian coupled nanocavity 
system. In this case, the gains ( γn ) and losses ( κn ) of the individual element cavities are no longer negligible but 
are restored to different values, leading to a non-symmetrical gain/loss profile within the coupled system. To take 
full advantage of the results and in-depth understandings in Figs. 5 and 6, we explore the TC-PhC nanocavity 
structure again; however, different levels of optical gains are introduced on the individual element nanocavities 
( γ1  = γ2  = γ3  = 0 , Fig. 6). The characteristic matrix equation describing the system is then written as

For simplicity, we set the intrinsic loss κ identical to all three element nanocavities (i.e., κ1 = κ2 = κ3 = κ ). 
In addition, the time-reversal condition and weak-coupling assumption were applied to the equation.

Figure 7a shows the non-Hermitian TC-PhC nanocavity; the optical gains of γ1 , γ2 , and γ3 are introduced to 
element nanocavities of 1 (yellow), 2 (blue) and 3 (green), respectively. Next, we sequentially varied the individual 
optical gains γn (Fig. 7b); Step 1: for γ2 = γ3 = 0 , the γ1 increases gradually from 0 to γmax , Step 2: for γ1 = γmax 
and γ3 = 0 , the γ2 increases gradually from 0 to γmax , and Step 3: increasing γ3 from 0 to γmax , while γ1 and γ2 
is fixed at γmax . In such non-Hermitian coupled systems, it is known that a critical level of non-uniformity in 
optical gain/loss often invites unexpected transitions in phase, resulting in unprecedented optical phenomena, 
such as modal coalescence and the sudden emergence of bifurcations. Significantly, these unusual events are 
reflected on the system’s eigenfrequencies; therefore, it is significantly importance to investigate the spectral 
trajectories of the system.

In Fig. 8, we have plotted the real (Re( f  )) and imaginary parts (Im( f  )) of all normal mode eigenfrequencies 
as well as the field profiles of the selected normal modes as the gain sequentially varies. There are several inter-
esting non-Hermitian features. First, in the entire process of Step 1, the system supported three normal modes 
(Modes 1 (blue), 2 (red), and 3 (black)), which were spectrally well separated (Fig. 8a). This indicates that the 
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Figure 6.   Field profile generation using overlap integral method. (a,c) Consolidation process to obtain Ex-field 
profiles in the TC-PhC nanocavities of Fig. 5a,d with two airhole shift using overlap integral method. (b) Three 
system eigenmodes at 199.13 THz ( f1 ), 199.01 THz ( f2 ), and 198.89 THz ( f3 ) for the nanocavity of Fig. 5a 
(arrows in Fig. 5b). (d) Three system eigenmodes at 199.36 THz ( f1 ), 199.01 THz ( f2 ), and 198.66 THz ( f3 ) for 
the nanocavity of Fig. 5d (arrows in Fig. 5d).
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system remained in an unbroken parity-time (PT) symmetric phase. Second, as γ1 increased, Mode 1 changed 
from the decaying type to the oscillating type and further changed to the amplifying type mode (red lines and 
circles, Fig. 8a,b) without a significant shift in its spectral position. The other two eigenmodes exhibited almost 
identical Im( f  ) values (blue and black lines and circles). Third, as expected, Step 3 was a simple reverse process 
of Step 1; therefore, similar features but in the reverse direction were observed (Fig. 8e,f). Fourth, in Step 2, 
the phase transition, one of the most unique non-Hermitian properties, occurred at exceptional points (EPs), 
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Figure 7.   Non-Hermitian TC-PhC nanocavities with asymmetric optical gains. (a) Schematic showing three 
different optical gains assigned to element cavities. The yellow, blue, and green shaded areas indicate regions 
where different optical gains with a volume of 1.46 × 2.52 × 0.25 µm3 are introduced. (b) Sequential steps of 
introducing optical gains to element cavities.
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resulting in the normal mode coalescence and the emergence of modal trifurcation (Fig. 8c,d). Furthermore, a 
gradual evolution from the decaying- to the amplifying-type mode was observed in Mode 1 (Fig. 8d). Interest-
ingly, as γ2 increased, the Re( f  ) of Mode 1 exhibited an overall symmetric feature with a local maximum at the 
EP (Fig. 8c). In addition, no mode-type transition has occurred in the other two modes; however, their Re( f  ) 
exhibited mirror-like behaviors with respect to the EP: (1) as γ2 approached to EP, Re( f  ) of Mode 2 remained 
unchanged, whereas those of Mode 3 rapidly fell onto the EP and (2) as γ2 further increased from EP to γmax , 
these observation occurred vice versa. Significantly, these features are unique non-Hermitian behaviors that 
cannot be observed even in doubly coupled non-Hermitian systems. In addition, although some of the features 
originate from the choice of coupled cavity structure, most features, including phase and mode-type transi-
tions, are well-known characteristics observed in non-Hermitian coupled systems. We believe that the proposed 
multiply-coupled nanocavity systems are not only intriguing in a stand-alone form but also useful for designing 
unique optical applications when integrated (or combined) with other optical components (techniques). For 
example, a programmable adaptive pumping enables to deliver two-dimensional (2D) phase/intensity informa-
tion of pumping beam to coupled nanocavities and realize the site-controlled operation of lasing between cavities. 
In addition, an aligned micro-transfer can further realize programmable light coupling to optical waveguides, 
which directly allows for encode the 2D phase/intensity maps of incident beam to transmitted optical signals 
at the ends of waveguides.

Discussion
We investigated the intercavity interactions in various coupled PhC nanocavities with different coupling schemes. 
We showed that the coupling constant can be determined using the SOI method, which can facilitate normal 
mode analysis without increasing the levels of complexity. It was demonstrated that the original eigenmode 
frequency and field profile of a single cavity can be used as building blocks to determine the normal modes of 
coupled cavities. Furthermore, we successfully demonstrated that non-Hermitian TC-PhC nanocavities with 
different coupling geometries could be analyzed using the SOI method. We believe that the SOI method can help 
to understand important characteristics of various non-Hermitian optical systems.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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